Может ли возобновляемая энергия действительно заменить ископаемое топливо?

 

Энергия электростанций – это важная часть ответа, говорит ученая из Университета Пердью Морин МакКенн. «Растения – это основа будущей биоэкономики», – говорит она. «На мой взгляд, создание устойчивой экономики означает, что мы прекращаем выкапывать углерод из земли и начинаем использовать полтора миллиарда тонн биомассы, доступной в США ежегодно». Это стратегический запас углерода, который мы должны использовать для вытеснения нефти».
 
Будущее биоэнергетики
МакКенн – профессор биологических наук, бывший директор Энергетического центра в Purdue’s Discovery Park и избранный президент Американского общества растительных биологов. Свою академическую карьеру она посвятила изучению клеточных стенок растений, которые содержат одни из самых сложных молекул в природе. Изучая широкий спектр растений – от тополей до цинний – она охарактеризовала сотни генов растений и их продуктов в попытке понять, как они все взаимодействуют и как ими можно выгодно манипулировать.
Подписывайтесь на наш youtube канал!
 
Подпишитесь на ЗАКРЫТЫЕ эфиры c ЛУЧШИМИ психологами, врачами, натуропатами, остеопатами 
на нашем закрытом аккаунте  course.econet.ru/private-account
ПОЛУЧИТЬ ДОСТУП
В производстве этанола используются ферменты для расщепления крахмалистых зерен кукурузы на молекулы глюкозы, которые, в свою очередь, ферментируются микроорганизмами для получения пригодного к использованию топлива. Многие исследователи работают над возможностью получения большего количества глюкозы путем разрушения целлюлозы – первичного волокнистого компонента стенок всех растительных клеток, который намного больше, чем крахмал. Однако МакКенн говорит, что их методы могут игнорировать ценный ресурс.
В дополнение к целлюлозе, клеточные стенки содержат много сложных, поли-ароматических молекул, называемых лигнинами. Эти соединения могут встать на пути ферментов и катализаторов, которые пытаются получить доступ к целлюлозе и разбить ее на полезную глюкозу. В результате многие лаборатории ранее пытались создать растения, в стенках клеток которых было больше целлюлозы и меньше лигнинов.
Но оказалось, что лигнины важны для развития растений и могут быть ценным источником химических веществ. В качестве директора Центра Пердью по прямому каталитическому преобразованию биомассы в биотопливо (C3Bio), МакКенн сотрудничает с химиками и инженерами в области максимального использования доступной биомассы, в том числе лигнина. Девятилетний грант Министерства энергетики США профинансировал работу исследователей C3Bio по использованию химических катализаторов для преобразования как целлюлозы, так и лигнина в жидкие углеводороды, которые более энергоемкие, чем этанол, и полностью совместимы с двигателями и существующей топливной инфраструктурой.
 
Может ли возобновляемая энергия действительно заменить ископаемое топливо?
В свете полезности лигнинов МакКенн и ее коллеги заинтересованы в альтернативных стратегиях оптимизации биотоплива, которые не предполагают снижения содержания лигнина в растениях. Например, если исследователи могут регулировать прочность «клея» между растительными клетками, они могут облегчить ферментам доступ к целлюлозе, а также уменьшить количество энергии, необходимой для измельчения растительного материала. Другой подход заключается в генной инженерии жизни, выращивании растений для включения химических катализаторов в их собственные клеточные стенки, что поможет в конечном итоге распад будет более быстрым и полным.
«В обоих случаях эта работа является отражением синтетического биологического мышления», – говорит МакКенн. «Мы не просто берём то, что даёт нам природа, мы думаем о том, как улучшить характеристики биомассы, используя весь инструментарий генетики».
МакКенн призывает других думать о «путях распространения углерода». «Если мы думаем о том, как растения растут, то они чудесные химики». Они выводят углекислый газ из атмосферы и воды через свои корни и преобразуют эти простые молекулы в очень сложные структуры клеточных стенок», – говорит она. «Когда мы думаем об использовании растительного материала на биорафинадном заводе, главная цель состоит в том, чтобы каждый атом углерода, который растения так тщательно удерживают как часть своего тела, оказался в полезной молекуле-мишени, будь то жидкий углеводород или компонент какого-то материала с продвинутыми свойствами».
Как биологи-синтетики, МакКенн и члены ее лаборатории мыслят целостно, оптимизируя выращивание культур для производства продуктов питания, биотоплива и полезных материалов, таких как специализированные химикаты. Независимо от конечной цели, говорит она, думая об оптимизации, она учитывает три аспекта: увеличение урожайности с единицы площади, повышение качества и ценности каждого растения и увеличение площади земли, на которой можно выращивать прибыльные культуры. Целостный подход особенно важен для обеспечения того, чтобы ученые и сельскохозяйственные производители достигали этих целей без ущерба для глобальной окружающей среды или местных экосистем.
«По мере того как появляется новая биоэкономика, основанная на биологических науках, растения стоят у ее истоков во многих отношениях – как с точки зрения энергии, которую они могут обеспечить, так и с точки зрения видов молекул, которые они могут вырабатывать», – говорит МакКенн.
В настоящее время она признает, что работа по прекращению экономической зависимости от ископаемых видов топлива продолжается. Переход к экономике, основанной на возобновляемых источниках энергии, потребует многоуровневых изменений с течением времени. Например, даже если мы полностью перейдем на электромобили, нам, скорее всего, все равно понадобится углеводородное топливо для добычи лития для аккумуляторов и эксплуатации машин с более длительным сроком службы, чем автомобилей, таких как самолеты и океанские суда. Тем не менее, она сохраняет позитивный прогноз.
«Что дает мне большой оптимизм, так это то, что мы переживаем революцию в нашей способности делать новые открытия, которые приводят к технологиям, позволяющим ускорить темп открытий», – говорит она. Мы собираемся найти новые способы преобразования энергии из одной формы в другую, которые мы даже не представляли себе». Способность к такому существенному переходу от экономики, основанной на ископаемом топливе, к экономике, основанной на возобновляемых источниках энергии, будет существовать». Нам просто нужно двигаться вперёд».

 

Энергия электростанций – это важная часть ответа, говорит ученая из Университета Пердью Морин МакКенн. «Растения – это основа будущей биоэкономики», – говорит она. «На мой взгляд, создание устойчивой экономики означает, что мы прекращаем выкапывать углерод из земли и начинаем использовать полтора миллиарда тонн биомассы, доступной в США ежегодно». Это стратегический запас углерода, который мы должны использовать для вытеснения нефти».

 

МакКенн – профессор биологических наук, бывший директор Энергетического центра в Purdue’s Discovery Park и избранный президент Американского общества растительных биологов. Свою академическую карьеру она посвятила изучению клеточных стенок растений, которые содержат одни из самых сложных молекул в природе. Изучая широкий спектр растений – от тополей до цинний – она охарактеризовала сотни генов растений и их продуктов в попытке понять, как они все взаимодействуют и как ими можно выгодно манипулировать.

 

В производстве этанола используются ферменты для расщепления крахмалистых зерен кукурузы на молекулы глюкозы, которые, в свою очередь, ферментируются микроорганизмами для получения пригодного к использованию топлива. Многие исследователи работают над возможностью получения большего количества глюкозы путем разрушения целлюлозы – первичного волокнистого компонента стенок всех растительных клеток, который намного больше, чем крахмал. Однако МакКенн говорит, что их методы могут игнорировать ценный ресурс.

 

В дополнение к целлюлозе, клеточные стенки содержат много сложных, поли-ароматических молекул, называемых лигнинами. Эти соединения могут встать на пути ферментов и катализаторов, которые пытаются получить доступ к целлюлозе и разбить ее на полезную глюкозу. В результате многие лаборатории ранее пытались создать растения, в стенках клеток которых было больше целлюлозы и меньше лигнинов.

 

Но оказалось, что лигнины важны для развития растений и могут быть ценным источником химических веществ. В качестве директора Центра Пердью по прямому каталитическому преобразованию биомассы в биотопливо (C3Bio), МакКенн сотрудничает с химиками и инженерами в области максимального использования доступной биомассы, в том числе лигнина. Девятилетний грант Министерства энергетики США профинансировал работу исследователей C3Bio по использованию химических катализаторов для преобразования как целлюлозы, так и лигнина в жидкие углеводороды, которые более энергоемкие, чем этанол, и полностью совместимы с двигателями и существующей топливной инфраструктурой.

 

В свете полезности лигнинов МакКенн и ее коллеги заинтересованы в альтернативных стратегиях оптимизации биотоплива, которые не предполагают снижения содержания лигнина в растениях. Например, если исследователи могут регулировать прочность «клея» между растительными клетками, они могут облегчить ферментам доступ к целлюлозе, а также уменьшить количество энергии, необходимой для измельчения растительного материала. Другой подход заключается в генной инженерии жизни, выращивании растений для включения химических катализаторов в их собственные клеточные стенки, что поможет в конечном итоге распад будет более быстрым и полным.

 

«В обоих случаях эта работа является отражением синтетического биологического мышления», – говорит МакКенн. «Мы не просто берём то, что даёт нам природа, мы думаем о том, как улучшить характеристики биомассы, используя весь инструментарий генетики».

 

МакКенн призывает других думать о «путях распространения углерода». «Если мы думаем о том, как растения растут, то они чудесные химики». Они выводят углекислый газ из атмосферы и воды через свои корни и преобразуют эти простые молекулы в очень сложные структуры клеточных стенок», – говорит она. «Когда мы думаем об использовании растительного материала на биорафинадном заводе, главная цель состоит в том, чтобы каждый атом углерода, который растения так тщательно удерживают как часть своего тела, оказался в полезной молекуле-мишени, будь то жидкий углеводород или компонент какого-то материала с продвинутыми свойствами».

 

Как биологи-синтетики, МакКенн и члены ее лаборатории мыслят целостно, оптимизируя выращивание культур для производства продуктов питания, биотоплива и полезных материалов, таких как специализированные химикаты. Независимо от конечной цели, говорит она, думая об оптимизации, она учитывает три аспекта: увеличение урожайности с единицы площади, повышение качества и ценности каждого растения и увеличение площади земли, на которой можно выращивать прибыльные культуры. Целостный подход особенно важен для обеспечения того, чтобы ученые и сельскохозяйственные производители достигали этих целей без ущерба для глобальной окружающей среды или местных экосистем.

 

«По мере того как появляется новая биоэкономика, основанная на биологических науках, растения стоят у ее истоков во многих отношениях – как с точки зрения энергии, которую они могут обеспечить, так и с точки зрения видов молекул, которые они могут вырабатывать», – говорит МакКенн.

 

В настоящее время она признает, что работа по прекращению экономической зависимости от ископаемых видов топлива продолжается. Переход к экономике, основанной на возобновляемых источниках энергии, потребует многоуровневых изменений с течением времени. Например, даже если мы полностью перейдем на электромобили, нам, скорее всего, все равно понадобится углеводородное топливо для добычи лития для аккумуляторов и эксплуатации машин с более длительным сроком службы, чем автомобилей, таких как самолеты и океанские суда. Тем не менее, она сохраняет позитивный прогноз.

 

«Что дает мне большой оптимизм, так это то, что мы переживаем революцию в нашей способности делать новые открытия, которые приводят к технологиям, позволяющим ускорить темп открытий», – говорит она. Мы собираемся найти новые способы преобразования энергии из одной формы в другую, которые мы даже не представляли себе». Способность к такому существенному переходу от экономики, основанной на ископаемом топливе, к экономике, основанной на возобновляемых источниках энергии, будет существовать». Нам просто нужно двигаться вперёд».

 

https://econet.ru/articles/mozhet-li-vozobnovlyaemaya-energiya-deystvitelno-zamenit-iskopaemoe-toplivo-2020-05-13-22-19-35

 


09.06.2020