Ученые улучшили элементы новейших солнечных батарей

 

Ученые Национального исследовательского технологического университета МИСиС (НИТУ «МИСиС») с коллегами из Института физической химии и электрохимии А.Н. Фрумкина РАН и Университета Тор Вергата (Италия) добились значительной стабильности и эффективности перовскитных элементов – перспективной основы солнечных батарей – благодаря прослойке иодида меди.
Эффективные перовскитные солнечные батареи
Перовскитные материалы – молодой класс полупроводников для оптоэлектроники, считающийся эффективной альтернативой кремнию в производстве солнечных батарей. Ученые решили исправить их главный недочет – нестабильность. Ключевую роль при этом сыграла молекула метилламин-свинец-йод-3 (MAPbI3).
   
 
Ученые улучшили элементы новейших солнечных батарей
«Фотоактивный слой MAPbI3 кристаллизуется на поверхности транспортного слоя, переносящего положительные заряды (в нашем случае – оксид никеля, NiO). Как известно, при постоянном освещении и последующем нагреве перовскитных солнечных элементов с фотоактивным слоем MAPbI3 выделяются свободный йод и йодоводородная кислота, которые вредят интерфейсу между слоями перовскита и NiO, образуя множество дефектов – и существенно снижая стабильность и производительность устройства», – пояснил научный сотрудник лаборатории перспективной солнечной энергетики НИТУ «МИСиС» Данила Саранин.
 
Для устранения этой проблемы ученые использовали дополнительную прослойку из иодида меди – полупроводника между перовскитом и дырочно-транспортным NiO. «Данный материал не имеет столь стремительной деградации под действием света, сопровождаемой выделением соединений йода аналогично используемому перовскитному материалу.
Ученые улучшили элементы новейших солнечных батарей
Более того, дополнительный p-слой позволил улучшить сбор положительных зарядов и существенно снизить концентрацию дефектов на переходе между фото-поглощающим и дырочно-транспортными слоями», – отметил Данила Саранин.
 
Как пояснили сами ученые, стабилизировать перовскитный элемент аналогичной архитектуры и состава фотоактивного слоя за счет дополнительной органической прослойки – не новая идея для науки. Однако, по их словам, другие научные коллективы привлекали дорогие и сложные в синтезе материалы (производные металлорганического соединения ферроцена, маломолекулярные органические полупроводники).
 
Ученые же НИТУ «МИСиС» с коллегами первыми попробовали иодид меди – более доступный и простой в применении неорганический материал. Усовершенствование структуры перовскитного элемента, по их наблюдениям, повысило стабильность его работы в среднем на 40%, а КПД вырос до 15,2%.
 
Как утверждают создатели, толщина готового элемента составляет менее 1 микрона – в десятки раз меньше, чем у кремниевых солнечных батарей.
 
Далее ученые намерены создать аналогичную прослойку для стабилизации передачи отрицательных зарядов, а также масштабировать технологию до размеров широкоформатного модуля. 
ученыеулучш
Ученые Национального исследовательского технологического университета МИСиС (НИТУ «МИСиС») с коллегами из Института физической химии и электрохимии А.Н. Фрумкина РАН и Университета Тор Вергата (Италия) добились значительной стабильности и эффективности перовскитных элементов – перспективной основы солнечных батарей – благодаря прослойке иодида меди.
Перовскитные материалы – молодой класс полупроводников для оптоэлектроники, считающийся эффективной альтернативой кремнию в производстве солнечных батарей. Ученые решили исправить их главный недочет – нестабильность. Ключевую роль при этом сыграла молекула метилламин-свинец-йод-3 (MAPbI3).
«Фотоактивный слой MAPbI3 кристаллизуется на поверхности транспортного слоя, переносящего положительные заряды (в нашем случае – оксид никеля, NiO). Как известно, при постоянном освещении и последующем нагреве перовскитных солнечных элементов с фотоактивным слоем MAPbI3 выделяются свободный йод и йодоводородная кислота, которые вредят интерфейсу между слоями перовскита и NiO, образуя множество дефектов – и существенно снижая стабильность и производительность устройства», – пояснил научный сотрудник лаборатории перспективной солнечной энергетики НИТУ «МИСиС» Данила Саранин.
 
Для устранения этой проблемы ученые использовали дополнительную прослойку из иодида меди – полупроводника между перовскитом и дырочно-транспортным NiO. «Данный материал не имеет столь стремительной деградации под действием света, сопровождаемой выделением соединений йода аналогично используемому перовскитному материалу.
Более того, дополнительный p-слой позволил улучшить сбор положительных зарядов и существенно снизить концентрацию дефектов на переходе между фото-поглощающим и дырочно-транспортными слоями», – отметил Данила Саранин.
 
Как пояснили сами ученые, стабилизировать перовскитный элемент аналогичной архитектуры и состава фотоактивного слоя за счет дополнительной органической прослойки – не новая идея для науки. Однако, по их словам, другие научные коллективы привлекали дорогие и сложные в синтезе материалы (производные металлорганического соединения ферроцена, маломолекулярные органические полупроводники).
 
Ученые же НИТУ «МИСиС» с коллегами первыми попробовали иодид меди – более доступный и простой в применении неорганический материал. Усовершенствование структуры перовскитного элемента, по их наблюдениям, повысило стабильность его работы в среднем на 40%, а КПД вырос до 15,2%.
 
Как утверждают создатели, толщина готового элемента составляет менее 1 микрона – в десятки раз меньше, чем у кремниевых солнечных батарей.
 
Далее ученые намерены создать аналогичную прослойку для стабилизации передачи отрицательных зарядов, а также масштабировать технологию до размеров широкоформатного модуля. 
https://econet.ru/articles/uchenye-uluchshili-elementy-noveyshih-solnechnyh-batarey

 


22.06.2019