Энергетика на Гелие-3

О Гелие - 3


В последние месяцы в средствах массовой информации много говорится о наличии у ряда государств (в первую очередь США, России и Китая) проектов по добыче гелия-3 для управляемых термоядерных реакций. Эти проекты рассматриваются многими буквально как решение всех проблем человечества. Так что же такое гелий-3?

Из всех атомов гелия, которые существуют на Земле, 99,999862% атомов имеют массу, в 4 раза превышающую массу атома водорода. Это "гелий-4". Его атомные ядра – это альфа-частицы, которые образуются при радиоактивном распаде. А остальные 0,000138% атомов гелия тяжелее атома водорода лишь в 3 раза. Это и есть гелий-3.

Соотношение гелия-3 и гелия-4 в масштабах Вселенной существенно иное - там количество этих изотопов различается примерно на один порядок. В метеоритном веществе и в лунных породах содержание гелия-3 колеблется от 17 до 32% от всего количества гелия. Миллиарды лет назад на Земле соотношение гелия-4 и гелия-3 было такое же, как и во всей Вселенной. Однако за прошедшее в тех пор время гелий, образовавшийся при первичном нуклеосинтезе, полностью улетучился из земной атмосферы. И весь гелий, который сегодня есть на Земле, образовался в результате радиоактивного распада. То есть на Земле существует практически только гелий-4. А гелий-3 образуется только на Солнце в результате происходящих там термоядерных реакций (в основном на Солнце образуется гелий-4, но и гелия-3 там образуется тоже немало). С Солнца эти элементы разлетаются в пространство в виде так называемого "солнечного ветра" (особый вид космических лучей). На Землю и другие планеты "солнечный ветер" не попадает: мешает атмосфера и магнитное поле. А вот, скажем, на Луну, лишенную атмосферы, частицы "солнечного ветра" попадают и "застревают" в поверхностном слое грунта.

До некоторых пор эти факты представляли чисто теоретический интерес. В практической плоскости о гелии-3 заговорили, когда стало ясно, что нефть закончится в ближайшие десятилетия. Угля и газа хватит чуть подольше, но тоже не надолго. Очевидно, что единственный способ решения энергетической проблемы – это использование энергии атомного ядра. Однако и запасы урана тоже не бесконечны… Поэтому уже полвека неизменно популярна идея использования термоядерного синтеза.

В термоядерных реакциях, происходящих на Солнце, четыре атома легкого изотопа водорода соединяются в один атом гелия с выделением энергии. Однако для термоядерных реакций, производимых на Земле, легкий изотоп водорода (составляющий 99,985% всего водорода) не подойдет, потому что у реакции слияния легких изотопов водорода чрезвычайно малое сечение (вероятность реакции). Именно это низкое сечение реакции обеспечивает устойчивость Солнца – иначе на нем шла бы не устойчивая термоядерная реакция, а термоядерный взрыв.

Для термоядерных реакций, производимых на Земле, нужен "тяжелый водород" - дейтерий. Из водорода, который существует на Земле (в основном в виде воды) дейтерий составляет 0,015%. Добывать его можно электролизом обычной воды, в которой дейтерий составляет 0,0017% по массе. Однако, кроме дейтерия, для термоядерной реакции нужен второй компонент, атом которого должен быть в 3 раза тяжелее водорода. Это может быть либо "сверхтяжелый водород", который называется тритий, либо тот самый гелий-3. Тритий на Земле не существует, кроме того, он очень сильно радиоактивен и неустойчив. Для водородных бомб и экспериментальных установок тритий годится, а для "промышленных" реакторов – нет (в водородных бомбах тритий образуется при облучении лития нейтронами в результате реакции: 6Li + n -> 3H + 4He). Термоядерная реакция, происходящая с участием трития, описывается следующим уравнением: 2H + 3H -> 4He + n + 17,6 МэВ. Именно такая реакция рассматривается как основная в планируемых проектах, в частности, в создаваемом международном проекте ИТЭР.

Однако недостатком такой реакции является, во-первых, необходимость для нее сильно радиоактивного трития, а, во-вторых, то, что в ходе такой реакции возникает сильное нейтронное излучение. Поэтому в последнее время создаются проекты «безнейтронной» термоядерной реакции, топливом для которой служит гелий-3 – легкий изотоп гелия. Уравнения «безнейтронных» реакций таковы:

3He + 3He -> 4He + 2p + 12,8 МэВ,
3He + D -> 4He + p + 8,35 МэВ.

Преимущество реакций на гелии-3 по сравнению с дейтериево-тритиевой реакцией в том, что, во-первых, для нее не требуется радиоактивных изотопов в качестве топлива, а, во-вторых, получаемая энергия уносится не с нейтронами, а с протонами, из которых извлечь энергию будет легче.

Единственная проблема – практическое отсутствие гелия-3 на Земле. Но, как сказано выше, гелий-3 есть в лунном грунте. Поэтому для того, чтобы иметь источники энергии после того, как подойдет к концу ископаемые виды топлива, космические агентства разных стран разрабатывают планы строительства базы на Луне, которая будет перерабатывать лунный грунт (который называется реголит), добывать из него гелий-3 и в сжиженном виде доставлять его на термоядерные электростанции на Земле. Одной тонны гелия-3 хватит, чтобы обеспечить энергетические потребности всего человечества на несколько лет, что окупит все затраты на создание лунной базы. Буш уже поставил задачу: создать американскую лунную базу в 2015-2020 годах.

А что же сегодня предпринимается в России? Приведем подборку сообщений информационных агентств

"Россия может возобновить лунную программу в течение нескольких лет
15 января 2004 г.


В России обсуждается вопрос о возобновлении программ исследования Луны и Марса, заявил ИТАР-ТАСС первый заместитель главы Росавиакосмоса Николай Моисеев. "До конца года будет разработана Федеральная космическая программа до 2015 года, в которую, возможно, войдут и эти проекты", - сказал он. По словам Моисеева, "со стороны ученых поступает много инициатив по организации экспедиций на Луну и Марс, однако пока неизвестно, какая из них будет включена в федеральную программу".

Лунную программу Россия может реанимировать в течение нескольких лет, считает первый заместитель генерального директора Научно-производственного объединения им.Лавочкина Роальд Кремнев.
"После свертывания советской программы исследования спутника Земли в конце 70-х годов прошлого века мы более трех десятилетий поддерживаем научно-технические разработки по этой тематике на современном уровне", - утверждает Кремнев. По его словам, в настоящее время на предприятии, где был создан легендарный "Луноход", "есть серьезный задел по лунным автоматам". Создание и запуск такого аппарата, по оценке Кремнева, обойдется в 600 млн рублей.

Лунные источники энергии могут спасти Землю от глобального энергетического кризиса, считает член бюро Совета по космосу РАН, академик Эрик Галимов. Добытый на Луне и доставленный на Землю тритий может быть использован для термоядерного синтеза, утверждает ученый.
Источник: NEWSru.com


Российский ученый предлагает бульдозерами сгребать с Луны чудо-топливо
23 января 2004 г.


Академик Российской академии наук, член бюро Совета по космосу РАН Эрик Галимов считает, что нужно немедленно начать подготовку к добыче лунного топлива, сообщает ИТАР-ТАСС. Добычу гелия-3 на Луне и вывоз его оттуда космическими кораблями, по его мнению, можно будет начать через 30-40 лет.

"Чтобы обеспечить на год все человечество энергией, необходимо лишь два-три полета космических кораблей грузоподъемностью в 10 тонн, которые доставят гелий-3 с Луны... Затраты на межпланетную доставку будут в десятки раз меньше, чем стоимость вырабатываемой сейчас электроэнергии на атомных электростанциях", - сказал Галимов.

По подсчетам ученого, доставка вещества может начаться уже через 30-40 лет, но начинать работы в этой области нужно уже сейчас. По его словам, на разработку проекта "потребуется всего 25-30 миллионов долларов". Собирать гелий-3 с лунной поверхности ученый предлагает специальными бульдозерами.
Источник: Lenta.Ru


Лунные полезные ископаемые
20 января 2004 г.


На прошлой неделе в своей речи, посвященной новой космической программе США, президент Буш объявил, что на Луне нужно создать постоянную базу, которая станет первым шагом на пути к дальнейшему освоению космоса человеком. Он также сказал, что лунный грунт можно перерабатывать для получения ракетного топлива и пригодного для дыхания воздуха.

Буш привел в качестве примера два способа переработки лунного грунта, но, вообще-то, список лунных полезных ископаемых довольно длинный... Имеющийся в лунном грунте кремний можно использовать для изготовления солнечных панелей, железо - для разных металлических конструкций, алюминий, титан и магний - для создания корабля, который отправится в космос подальше от Земли.
Ну и, конечно же, на Луне собираются добывать изотоп гелий-3, который очень редок на Земле, а производство его в земных условиях очень дорого.

(по материалам SiliconValley.com)


Китай уверен, что его лунный проект окупит себя сторицей
3 августа 2004 г.


В марте 2003 г. руководство китайской космической программы официально объявило о начале работ по отправке исследовательского зонда к Луне. Недавно научный руководитель этого проекта академик китайской АН Оуянг Зиюань объявил о том, что уже на этом первом этапе исследования Луны Китай рассчитывает сделать большой вклад в науку и в развитие космических технологий. Так что китайский лунный проект обещает быстро окупить себя.

В ходе первого этапа китайской программы исследования Луны планируется, помимо прочего, измерить толщину лунного грунта, оценить возраст поверхности и определить количество имеющегося там гелия-3 (очень редко встречающегося на Земле изотопа гелия, который можно использовать в качестве топлива для термоядерного реактора)
(по материалам SpaceDaily)


Интересные рассуждения о космических программах, нужных для получения запасов гелия-3, даны в статье кандидата технических наук, члена-корреспондента Академии космонавтики им. К. Э. Циолковского Юрия Еськова «За чистым топливом – на Уран, опубликованной в "Российской газете", 11 апреля 2002 года. Автор пишет, что еще эффективнее, чем на Луне, искать гелий-3 в атмосферах дальних планет гигантов, например, Урана, где гелий-3 составляет 1:3000 (что в тысячу раз больше, чем в лунном грунте). По предложению автора, «Добыча гелия-3 и доставка его к Земле должна вестись беспилотными одноразовыми космическими аппаратами (“танкерами”), электроядерный двигатель которых с мощностью 100 000 кВт работает в течение всего двустороннего полета. За 10 лет аппарат преодолеет трудно вообразимую дистанцию в 6 млрд. км. Заметим, что двигатель, способный преодолеть такое гигантское расстояние за приемлемое время (10 лет), может работать только на ядерной энергии, используя то же топливо, что и нынешние АЭС (в принципе можно лететь и на солнечных батареях, но тогда аппарат будет весить сотни тысяч тонн); более того, означенный двигатель является экологически очень “грязным”. Фокус, однако, в том, что запускается он с высокой околоземной орбиты и вся жизнь его проходит в космосе, так что никаких экологических проблем для населения Земли он не создает.

Система бесперебойного снабжения наземных ТЯЭС с суммарной мощностью 3 млрд. кВт будет состоять из периодически (четырежды в год) запускаемых с околоземной орбиты “танкеров”. Запаса топлива аппарату хватит лишь в один конец: до цели он долетит с пустыми баками. Долетев до Урана и выйдя на орбиту, находящуюся в пределах атмосферы планеты, “танкер” начнет работать в режиме завода по разделению окружающей его атмосферы на компоненты: из сжиженного газа выделит товарный гелий-3 и водород, который используется как топливо для обратного полета; большая часть водорода и весь обычный гелий сбросятся за борт. Таким образом, обратная заправка (без которой задача возвращения нереализуема) оказывается фактически даровой. В результате полета на околоземную орбиту будет доставлено 70 тонн жидкого гелия-3; в каждый момент времени на трассе Земля – Уран будет находиться около 40 “танкеров”.

Возникает естественный вопрос: в какой степени существующие на сегодня технологии могут обеспечить функционирование такой системы? Ответ: большая часть этих элементов имеется, как говорят, “в железе”, остальные – на уровне далеко продвинутых проектно-конструкторских разработок, частично доведенных до опытной стадии. Главная проблема тут – бортовая энергоустановка. К нынешнему моменту накоплен огромный положительный опыт создания и эксплуатации реакторов наземных АЭС с мощностью 4 млн. кВт при ресурсе до 30 лет; мощности реакторов атомных подводных лодок достигают 100 000 кВт при ресурсе в десятки лет, есть и отечественный опыт создания и эксплуатации уникальных малоразмерных ядерных установок для космических аппаратов с мощностями до 100 кВт; высокотемпературные реакторы для космических ядерных двигателей прошли испытания и в США, и в СССР. Что касается размеров запускаемого беспилотного аппарата (450 тонн, в том числе 200 тонн топлива), то он по порядку величины соответствует массе МКС (а в окончательном проекте масса МКС планируется еще большей); суммарный же годовой грузопоток на орбиту (1900 тонн) меньше, чем планируемый для стандартных программ (космическая связь, телевещание и т.п.). Подавляющее большинство элементов такого орбитального гелиево-водородного завода существует уже сегодня и благополучно действует в криогенной промышленности». Автор говорит, что даже при сегодняшнем уровне развития техники такой проект был бы вполне экономически рентабельным: «Отпускная цена электроэнергии в мире составляет от 5 до 10 центов за кВт. ч. Из простейшей арифметики видно, что доставка с Урана гелия-3 будет оставаться рентабельной даже при цене 1 тонны в 10 млрд. долларов. Цена же выведения на орбиту одного подобного завода составляет 10 млн. долларов за тонну (кстати, такова сегодняшняя цена золота), а в ближайшей перспективе многоразовые носители снизят эту цену до 1 млн. долларов за тонну выводимого груза.».

Стали уже привычными слова, что наукоемкие отрасли (ядерная, космическая и др.) являются локомотивом экономики. Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики (что является предметом для отдельного разговора), так и термоядерной техники.
В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Этот реактор конструируется по схеме «токамак» (что означает сокращение от фразы «ТОроидальная КАмера с МАгнитными Катушками»). Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше. Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой – сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры. Оказалось, что к неустойчивости приводит комбинация целого ряда сложных физических процессов. Кроме того, оказалось, что время устойчивого удержания плазмы возрастает с увеличением размеров установки. Крупнейшая отечественная машина ТОКАМАК-15 уже имеет тороидальную вакуумную камеру с внешним диаметром "бублика" более пяти метров. Крупные исследовательские токамаки были построены в России, Японии, США, Франции, Англии. А несколько лет назад специалисты пришли к выводу, что оставшиеся нерешенные проблемы нужно исследовать на установке, максимально приближенной к реальному энергетическому термоядерному реактору. Это понимание и привело к работам по созданию ИТэРа. От всех других установок и методов этот вариант проведения управляемой термоядерной реакции отличается прежде всего тем, что он в основном уже вышел из сферы сомнений и поисков. Благодаря накопленной за пятьдесят лет исследований обширной базе физических и инженерно-технических данных он вплотную подошел к стадии экспериментального реактора. Это, видимо, и вдохновило международное сообщество на создание ИТЭРа – ученые решили, что даже богатой стране нет никакого смысла делать термоядерный реактор в одиночку - результатом будут знания и опыт, которые все равно станут общим достоянием и в национальную экономику сразу ничего не внесут. В то же время, объединив усилия, можно резко ускорить продвижение к своему работающему термояду и снизить собственные затраты. Поэтому в 1992 году было подписано соглашение о совместном техническом конструировании реактора ИТЭР под эгидой МАГАТЭ. А его концептуальное проектирование по инициативе нашей страны началось на четыре года раньше. В команду проектировщиков ИТЭРа вошли специалисты Европейского союза, России, США и Японии.
Другое направление на пути к управляемой термоядерной реакции – это лазерный термоядерный синтез (ЛТС). Он заключается в том, что мишень из "сырья" для термоядерной реакции облучается со всех сторон лазерными лучами, и таким образом там создаются условия, достаточные для осуществления термоядерной реакции. Сложность в том, как это осуществить технически. Моя диссертационная работа состоит в проведении компьютерного моделирования явления оптического резонанса в сферичеких мишенях при лазерном облучении. Расчеты показывают, что при определенных условиях в оптической мишени происходит концентрация энергии, при которой могут возникнуть условия, необходимые для термоядерной реакции.

То государство, которое освоит технологии термоядерного синтеза эту технологию раньше других, получит огромные преимущества перед другими. Для того, чтобы Россия не осталась на задворках цивилизации и приняла участие в разработке этих проектов, нужна политическая воля руководства государства, примерно как это было с советскими ядерным и космическим проектами в середине ХХ века.

Источник: http://element114.narod.ru



Ученые России разрабатывают на Луне "фабрики энергии", способные обеспечить Землю на тысячи лет

Луна на тысячи лет обеспечит человечество энергией. В этом уверен академик Российской академии наук (РАН), член бюро Совета по космосу РАН Эрик Галимов.

"По прогнозу ученых, запасов нефти, газа, урана на Земле, хватит до середины следующего века, поэтому уже сейчас надо искать альтернативные источники энергии", - сказал он в интервью ИТАР-ТАСС.

"Самый перспективный из них - гелий-3, запасы которого в верхних слоях поверхности Луны достигают около 500 млн тонн", - подчеркнул академик. На Земле этот изотоп практически отсутствует, в недрах планеты его не более нескольких сотен килограммов.

По словам Галимова, гелий-3 "является идеальным экологически чистым топливом для термоядерного синтеза".

"При его использовании не возникает радиации, поэтому проблема захоронения ядерных отходов, так остро стоящая перед миром, отпадает сама собой", - подчеркнул академик.

Гелий-3 на Луну в течение миллиардов лет приносит солнечный ветер, пояснил Галимов. Ученые узнали о его существовании на Луне, проводя анализы грунта, доставленного со спутника Земли советскими автоматическими станциями и американскими астронавтами.

"Чтобы обеспечить на год все человечество энергией, необходимо лишь два-три полета космических кораблей грузоподъемностью в 10 тонн, которые доставят гелий-3 с Луны", - отметил он.

"Затраты на межпланетную доставку будут в десятки раз меньше, чем стоимость вырабатываемой сейчас электроэнергии на атомных электростанциях", - сказал Галимов.

Академик считает, что доставка гелия-3 с Луны "может стать реальностью уже через 30-40 лет, но для этого работы надо начинать уже сейчас". По его словам, на разработку проекта "потребуется всего 25-30 млн долл".

Извлекать гелий-3 из недр Луны российский ученый предлагает с помощью своеобразных "лунных бульдозеров", которые после нагрева грунта будут сгребать изотоп с поверхности.

"Лунные проекты - самые экономически выгодные и дешевые, России они по силам", - подчеркнул Галимов.

Экономический потенциал гелия-3 привлек внимание американских ученых

Джеральд Кульцински и Джон Сантариус из Университета Висконсина утверждают, что гелий-3 - это будущее американской энергетики. В нем содержится вся энергия, которая может понадобится США в следующем тысячелетии, пишет The USA Today.

"Если бы мы могли посадить на Луне шаттл, загрузить его гелием-3 и вернуть шаттл на землю, мы бы обеспечили всю Америку необходимой энергией на целый год", - говорит Кульцински.

Он подчеркнул, что идея президента Буша создать на Луне "перевалочную базу", вселяет в него надежду на то, что правительство обратит внимание на экономический потенциал гелия-3. Коллега Кульцински - Джон Сантариус заявил, что не знает о каких-либо других научных учреждениях, которые бы изучали гелий-3.

Источник: NEWSru и http://www.astera.ru