Солнечное отопление

Солнечное отопление


Почти половина всей производимой энергии используется для обогрева воздуха. Солнце светит и зимой, но его излучение обычно недооценивается.

Декабрьским днем недалеко от Цюриха физик А. Фишер генерировал пар; это было, когда солнце находилось в своей самой низкой точке, а температура воздуха была 3°С. Днем позже солнечный коллектор площадью 0,7 м2 нагрел 30 л холодной воды из садового водопровода до +60°С.

Солнечная энергия зимой может легко использоваться для обогрева воздуха в помещениях. Весной и осенью, когда часто бывает солнечно, но холодно, солнечный обогрев помещений позволит не включать основное отопление. Это дает возможность сэкономить часть энергии, а соответственно и деньги. Для домов, которыми редко пользуются, или для сезонного жилья (дачи, бунгало), обогрев солнечной энергией особенно полезен зимой, т.к. исключает чрезмерное охлаждение стен, предотвращая разрушение от конденсации влаги и плесени. Таким образом, ежегодные эксплуатационные расходы в основном снижаются.

При отоплении домов с помощью солнечного тепла необходимо решать проблему теплоизоляции помещений на основе архитектурно-конструктивных элементов, т.е. при создании эффективной системы солнечного отопления следует возводить дома, имеющие хорошие теплоизоляционные свойства.

Солнечный вклад в отопление дома
Стоимость тепла
Вспомогательное отопление



Солнечный вклад в отопление дома
К сожалению, период поступления тепла от Солнца далеко не всегда совпадает по фазе с периодом появления тепловых нагрузок.

Большая часть энергии, которая имеется в нашем распоряжении в течение летнего периода, теряется из-за отсутствия постоянного спроса на нее (на самом деле коллекторная система является до некоторой степени системой саморегулирующейся: когда температура носителя достигает равновесного значения, тепловосприятие прекращается, поскольку тепловые потери от солнечного коллектора становятся равными воспринимаемому теплу).

Количество полезного тепла, поглощенного солнечным коллектором, зависит от 7 параметров:

1. величины поступающей солнечной энергии;
2. оптических потерь в прозрачной изоляции;
3. поглощающих свойств тепловоспринимающей поверхности солнечного коллектора;
4. эффективности теплоотдачи от теплоприемника (от тепловоспринимающей поверхности солнечного коллектора к жидкости, т.е. от величины эффективности теплоприемника);
5. пропускательной способности прозрачной теплоизоляции, которая определяет уровень тепловых потерь;
6. температуры тепловоспринимающей поверхности солнечного коллектора, которая в свою очередь зависит от скорости теплоносителя и температуры теплоносителя на входе в солнечный коллектор;
7. температуры наружного воздуха.

Эффективность солнечного коллектора, т.е. отношение использованной энергии и падающей, будет определяться всеми этими параметрами. При благоприятных условиях она может достичь 70%, а при неблагоприятных снизиться до 30%. Точное значение эффективности можно получить при предварительном расчете только путем полного моделирования поведения системы с учетом всех факторов, перечисленных выше. Очевидно, что такая задача может быть решена только с применением компьютера.

При грубых оценках можно считать, что средняя эффективность коллектора при температуре 40...50° в отопительный сезон составляет около 40%.

Поскольку плотность потока солнечной радиации постоянно меняется, то для расчетных оценок можно пользоваться полными суммами радиации за день или даже за месяц.

В табл. 1 в качестве примера приведены:

  • средние месячные суммы поступления солнечной радиации, измеренные на горизонтальной поверхности;

  • суммы, рассчитанные для вертикальных стен, обращенных на юг;

  • суммы для поверхностей с оптимальным углом наклона 34° (для Кью, близ Лондона).


  • Таблица 1. Месячные суммы прихода солнечной радиации для Кью (близ Лондона)

    МесяцГоризонтальная поверхность, кВт*ч/м2Вертикальная поверхность южной ориентации, кВт*ч/м2 Наклонная поверхность (34°) южной ориентации, кВт*ч/м2
    Январь18,330,329,4
    Февраль30,947,351,6
    Март60,661,881,8
    Апрель111 75,9137,1
    Май 123,2 57,2 133,2
    Июнь150,4 53,8 155,7
    Июль 140,4 53,6 142,1
    Август 125,7 69,1 <141,1/td>
    Сентябрь 85,975,2 111,2
    Октябрь 47,6 62,8 72,8
    Ноябрь 23,741,240,5
    Декабрь 14,422,622,2

    Из таблицы видно, что поверхность с оптимальным углом наклона получает (в среднем в течение 8 зимних месяцев) примерно в 1,5 раза больше энергии, чем горизонтальная поверхность. Если известны суммы прихода солнечной радиации на горизонтальную поверхность, то для пересчета на наклонную поверхность их можно умножить на произведение этого коэффициента (1,5) и принятого значения эффективности солнечного коллектора, равного 40%, т.е.

    1,5*0,4=0,6


    При этом получится количество полезной энергии, поглощенной наклонной тепловоспринимающей поверхностью в течение данного периода.

    Для того, чтобы определить эффективный вклад солнечной энергии в теплоснабжение здания даже путем ручного подсчета, необходимо составить по крайней мере месячные балансы потребностей и полезного тепла, получаемого от Солнца. Для наглядности рассмотрим пример.

    Если использовать приведенные выше данные и рассмотреть дом, для которого интенсивность тепловых потерь составляет 250 Вт/°C, местоположение характеризуется годовым числом градусо-дней равным 2800 (67200°C*ч). а площадь солнечных коллекторов составляет, например, 40 м2, то получается следующее распределение по месяцам (см. табл. 2).

    Таблица 2. Расчет эффективного вклада солнечной энергии

    Месяц°C*ч/мес Отопительная нагрузка, кВт*чСумма радиации на горизонтальной поверхности, кВт*ч/м2 Полезное тепло на единицу площади коллектора (D*0,6), кВт*ч/м2 Суммарное полезное тепло (E*40 м2), кВт*чСолнечный вклад, кВт*ч/м2
    A B C D E F G
    Январь10560264018,311 440440
    Февраль 9600 2400 30,9 18,5 740 740
    Март9120228060,636,4 14561456
    Апрель 6840 1710 111 67,2 2688 1710
    Май 4728 1182 123,2 73,9 2956 1182
    Июнь - - 150,4 90,2 3608 -
    Июль - - 140,4 84,2 3368 -
    Август - - 125,7 75,4 3016-
    Сентябрь 3096 774 85,9 51,6 2064 774
    Октябрь 5352 1388 47,6 28,6 1144 1144
    Ноябрь 8064 2016 23,7 14,2 568 568
    Декабрь 9840 2410 14,4 8,6 344 344
    Сумма 67200 16800 933 559,8 22392 8358


    Стоимость тепла
    Подсчитав количество тепла, обеспечиваемого за счет Солнца, необходимо представить его в денежном выражении.

    Стоимость выработанного тепла зависит от:

  • стоимости топлива;

  • теплотворной способности топлива;

  • общей эффективности системы.


  • Полученные таким образом эксплуатационные расходы можно затем сравнить с капитальными затратами на солнечную отопительную систему.

    В соответствии с этим, если считать, что в рассмотренном выше примере солнечная отопительная система используется вместо традиционной системы отопления, потребляющей, например, газовое топливо и вырабатывающей тепло стоимостью 1,67 руб/кВт*ч, то, чтобы определить полученную годовую экономию, надо 8358 кВт*ч, обеспечиваемых за счет солнечной энергии (согласно расчетам табл. 2 для площади коллектора 40 м2), умножить на 1,67 руб/кВт*ч, что дает

    8358*1,67 = 13957,86 руб.



    Вспомогательное отопление
    Одним из вопросов, наиболее часто задаваемых людьми, которые хотят понять использование солнечной энергии для отопления (или другой цели), является вопрос: «Что делать, когда солнце не светит?» Поняв концепцию запасания энергии, они задают следующий вопрос: «Что делать, когда в аккумуляторе не остается больше тепловой энергии?» Вопрос закономерен, и необходимость в дублирующей, часто традиционной системе является серьезным камнем преткновения для широкого принятия солнечной энергии в качестве альтернативы существующим источникам энергии.

    Если мощности системы солнечного теплоснабжения недостаточно, чтобы продержать здание в течение периода холодной, пасмурной погоды, то последствия, даже один раз за зиму, могут быть достаточно серьезными, заставляющими предусматривать в качестве дублирующей обычную полномерную систему отопления. Большинство зданий, отапливаемых солнечной энергией, нуждаются в полномерной дублирующей системе. В настоящее время в большинстве районов солнечная энергия должна рассматриваться в качестве средства снижения расхода традиционных видов энергии, а не как полный их заменитель.

    Обычные отопители являются подходящими дублерами, но существует немало и других альтернатив, например:

    - камины;
    - дровяные печи;
    - дровяные калориферы.

    Предположим, однако, что нам захотелось сделать систему солнечного теплоснабжения достаточно большой, чтобы обеспечить теплом помещение в наиболее неблагоприятных условиях. Поскольку сочетание очень холодных дней и долгих периодов облачной погоды случается редко, то дополнительные размеры солнечной энергетической установки (коллектор и аккумулятор), которые потребуются для этих случаев, обойдутся слишком дорого при сравнительно небольшой экономии топлива. Кроме того, большую часть времени система будет работать при мощности ниже номинальной.

    Система солнечного теплоснабжения, рассчитанная на обеспечение 50% отопительной нагрузки, может дать достаточно тепла только на 1 день очень холодной погоды. При удвоении размеров солнечной системы дом будет обеспечен теплом в течение 2 холодных пасмурных дней. Для периодов более 2 дней последующее увеличение размеров будет столь же неоправданным, как и предыдущее. Кроме того, будут периоды мягкой погоды, когда второе увеличение не потребуется.

    Теперь, если увеличить площадь коллекторов отопительной системы еще в 1,5 раза, чтобы продержаться 3 холодных и облачных дня, то теоретически она будет достаточной для обеспечения 1/2 всей потребности дома в течение зимы. Но, разумеется, на практике этого может не быть, поскольку случается иногда 4 (и более) дня подряд холодной облачной погоды. Чтобы учесть этот 4-ый день, нам потребуется система солнечного отопления, которая теоретически может собрать в 2 раза больше тепла, чем это необходимо зданию в течение отопительного сезона. Ясно, что холодные и облачные периоды могут быть более продолжительными, чем предусмотрено в проекте системы солнечного теплоснабжения. Чем больше коллектор, тем менее интенсивно используется каждое дополнительное приращение его размеров, тем меньше энергии экономится на единицу площади коллектора и тем меньше окупаемость капиталовложений на каждую дополнительную единицу площади.

    Тем не менее, предпринимались смелые попытки накопить достаточное количество тепловой энергии солнечного излучения для покрытия всей потребности в отоплении и отказаться от вспомогательной системы отопления. За редким исключением таких систем, как солнечный дом Г. Хэя, долговременное аккумулирование тепла является, пожалуй, единственной альтернативой вспомогательной системе. Г. Томасон близко подошел к 100%-ному солнечному отоплению в своем первом доме в Вашингтоне; только 5% отопительной нагрузки покрывалось за счет стандартного отопителя на жидком топливе.

    Если вспомогательная система покрывает лишь небольшой процент всей нагрузки, то есть смысл использовать электроотопление, несмотря на то, что оно требует производства значительного количества энергии на электростанции, которая затем преобразуется в тепло для обогрева (на электростанции расходуется 10500...13700 кДж для производства 1 кВт*ч тепловой энергии в здании). В большинстве случаев электрообогреватель будет дешевле нефтяной или газовой печи, а сравнительно небольшое количество электроэнергии, необходимой для обогрева здания, может оправдать его применение. Кроме того, электронагреватель - менее материалоемкое устройство благодаря сравнительно небольшому количеству материала (по сравнению с отопителем), идущему на изготовление электроспиралей.

    Так как КПД солнечного коллектора существенно возрастает, если эксплуатировать его при низких температурах, то отопительная система должна рассчитываться на использование как можно более низких температур — даже на уровне 24...27°C. Одно из достоинств системы Томасона, использующей теплый воздух, заключается в том, что она продолжает извлекать полезное тепло из аккумулятора при температурах, почти равных температуре помещения.

    В новом строительстве отопительные системы можно рассчитывать на использование более низких температур, например, путем удлинения трубчато-ребристых радиаторов с горячей водой, увеличения размеров радиационных панелей или увеличения объема воздуха более низкой температуры. Проектировщики чаще всего останавливают свой выбор на отоплении помещения с помощью теплого воздуха или на применении увеличенных радиационных панелей. В системе воздушного отопления лучше всего используется низкотемпературное запасенное тепло. Лучистые отопительные панели имеют длительное запаздывание (между включением системы и нагревом воздушного пространства) и обычно требуют более высоких рабочих температур теплоносителя, чем системы с горячим воздухом. Поэтому тепло из аккумулирующего устройства не используется в полной мере при более низких температурах, которые приемлемы для систем с теплым воздухом, да и общий КПД такой системы ниже. Превышение размеров системы из радиационных панелей для получения результатов, аналогичных результатам при использовании воздуха, может повлечь за собой значительные дополнительные затраты.

    Для повышения общего КПД системы (солнечного отопления и вспомогательной дублирующей системы) и одновременного снижения общих затрат путем ликвидации простоя составных частей, многие проектировщики избрали путь интегрирования солнечного коллектора и аккумулятора со вспомогательной системой. Общими являются такие составные элементы, как:

    - вентиляторы;
    - насосы;
    - теплообменники;
    - органы управления;
    - трубы;
    - воздуховоды.

    На рисунках статьи Системное проектирование показаны различные схемы таких систем.

    Ловушкой при проектировании стыковых элементов между системами является увеличение органов управления и движущихся частей, что повышает вероятность механических поломок. Искушение увеличить на 1...2% КПД путем добавления еще одного устройства на стыке систем является почти непреодолимым и может быть наиболее распространенной причиной выхода из строя солнечной отопительной системы. Обычно вспомогательный обогреватель не должен нагревать отсек аккумулятора солнечного тепла. Если это происходит, то фаза сбора солнечного тепла будет менее эффективной, так как почти всегда этот процесс будет протекать при более высоких температурах. В других системах снижение температуры аккумулятора благодаря использованию тепла зданием повышает общий КПД системы.

    Причины других недостатков этой схемы объясняются большой потерей тепла из аккумулятора из-за его постоянно высоких температур. В системах, в которых вспомогательное оборудование не нагревает аккумулятор, последний будет терять значительно меньше тепла при отсутствии солнца в течение нескольких дней. Даже в спроектированных таким путем системах потери тепла из контейнера составляют 5...20% всего тепла, поглощенного системой солнечного отопления. С аккумулятором, обогреваемом вспомогательным оборудованием, потеря тепла будет значительно выше и может быть оправдана только в том случае, если контейнер аккумулятора находится внутри отапливаемого помещения здания


    Автор: mensh /Олег Б. Меньшенин/